skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saylor, Rick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Emissions are a central component of atmosphericchemistry models. The Harmonized Emissions Component (HEMCO) is a softwarecomponent for computing emissions from a user-selected ensemble of emissioninventories and algorithms. It allows users to re-grid, combine, overwrite,subset, and scale emissions from different inventories through aconfiguration file and with no change to the model source code. Theconfiguration file also maps emissions to model species with appropriateunits. HEMCO can operate in offline stand-alone mode, but more importantlyit provides an online facility for models to compute emissions at runtime.HEMCO complies with the Earth System Modeling Framework (ESMF) forportability across models. We present a new version here, HEMCO 3.0, thatfeatures an improved three-layer architecture to facilitate implementationinto any atmospheric model and improved capability for calculatingemissions at any model resolution including multiscale and unstructuredgrids. The three-layer architecture of HEMCO 3.0 includes (1) the Data InputLayer that reads the configuration file and accesses the HEMCO library ofemission inventories and other environmental data, (2) the HEMCO Core thatcomputes emissions on the user-selected HEMCO grid, and (3) the ModelInterface Layer that re-grids (if needed) and serves the data to theatmospheric model and also serves model data to the HEMCO Core forcomputing emissions dependent on model state (such as from dust or vegetation). The HEMCO Core is common to the implementation in all models, whilethe Data Input Layer and the Model Interface Layer are adaptable to themodel environment. Default versions of the Data Input Layer and ModelInterface Layer enable straightforward implementation of HEMCO in any simplemodel architecture, and options are available to disable features such asre-gridding that may be done by independent couplers in more complexarchitectures. The HEMCO library of emission inventories and algorithms iscontinuously enriched through user contributions so that new inventoriescan be immediately shared across models. HEMCO can also serve as a generaldata broker for models to process input data not only for emissions but forany gridded environmental datasets. We describe existing implementations ofHEMCO 3.0 in (1) the GEOS-Chem “Classic” chemical transport model withshared-memory infrastructure, (2) the high-performance GEOS-Chem (GCHP)model with distributed-memory architecture, (3) the NASA GEOS Earth SystemModel (GEOS ESM), (4) the Weather Research and Forecasting model withGEOS-Chem (WRF-GC), (5) the Community Earth System Model Version 2 (CESM2),and (6) the NOAA Global Ensemble Forecast System – Aerosols(GEFS-Aerosols), as well as the planned implementation in the NOAA Unified ForecastSystem (UFS). Implementation of HEMCO in CESM2 contributes to theMulti-Scale Infrastructure for Chemistry and Aerosols (MUSICA) by providinga common emissions infrastructure to support different simulations ofatmospheric chemistry across scales. 
    more » « less
  2. Abstract Measurements of atmospheric ammonia (NH3) concentrations and fluxes are limited in coastal regions in the eastern U.S. In this study, continuous and high temporal resolution measurements (5s) of atmospheric NH3concentrations were recorded using a cavity ring‐down spectrometer in a temperate tidal salt marsh at the St Jones Reserve (Dover, DE). Micrometeorological variables were measured using an eddy covariance system which is part of the AmeriFlux network (US‐StJ). Soil, plant, and water chemistry were also analyzed to characterize the sources and sinks of atmospheric NH3. A new analytical methodology was used to estimate the average ecosystem‐scale diurnal cycle of NH3fluxes by replicating the characteristics of a chamber experiment. This virtual chamber approach estimates positive surface fluxes in continuing strongly stable conditions when mixing with the air above is minimal. Our findings show that tidal water level may have a significant impact on NH3emissions from the marsh. The largest fluxes were observed at low tide when more soil was exposed. While it is expected that NH3fluxes will peak when the air temperature maximizes, high tide occurred concurrently with midday peaks in solar irradiance led to a decrease in NH3fluxes. Furthermore, soil, plant, and water chemistry measurements underpinning the NH3concentrations and fluxes lead us to conclude that this coastal wetland ecosystem can act as either a sink or a source of NH3. Such measurements provide novel data on which we can base reliable parameterizations to simulate NH3emissions from coastal salt marsh ecosystems using surface‐atmosphere transfer models. 
    more » « less